Autor: |
Juti Rani Deka, Diganta Saikia, Yuan-Hung Lai, Hsien-Ming Kao, Yung-Chin Yang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Batteries, Vol 9, Iss 10, p 482 (2023) |
Druh dokumentu: |
article |
ISSN: |
2313-0105 |
DOI: |
10.3390/batteries9100482 |
Popis: |
A new nanocomposite system based on Fe3O4 nanoparticles confined in three-dimensional (3D) dual-mode cubic porous carbon is developed using the nanocasting and wet-impregnation methods to assess its performance as an anode for lithium-ion batteries. Several Fe3O4 precursor concentrations are chosen to optimize and determine the best-performing nanocomposite composition. The cubic mesoporous carbon CMK-9 offers a better ability for the Fe3O4 nanoparticles to be accommodated inside the mesopores, efficiently buffering the variation in volume and equally enhancing electrode/electrolyte contact for rapid charge and mass transfer. Among the prepared nanocomposites, the Fe3O4(13)@C9 anode delivers an excellent reversible discharge capacity of 1222 mA h g−1 after 150 cycles at a current rate of 100 mA g−1, with a capacity retention of 96.8% compared to the fourth cycle (1262 mA h g−1). At a higher current rate of 1000 mA g−1, the nanocomposite anode offers a superior discharge capacity of 636 mA h g−1 beyond 300 cycles. The present study reveals the use of a 3D mesoporous carbon material as a scaffold for anchoring Fe3O4 nanoparticles with impressive potential as an anode for new-generation lithium-ion batteries. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|