Autor: |
Kazunori Sunadome, Alek G. Erickson, Delf Kah, Ben Fabry, Csaba Adori, Polina Kameneva, Louis Faure, Shigeaki Kanatani, Marketa Kaucka, Ivar Dehnisch Ellström, Marketa Tesarova, Tomas Zikmund, Jozef Kaiser, Steven Edwards, Koichiro Maki, Taiji Adachi, Takuya Yamamoto, Kaj Fried, Igor Adameyko |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 14, Iss 1, Pp 1-24 (2023) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-023-38647-7 |
Popis: |
Abstract Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|