Phase transitions in the logarithmic Maxwell O(3)-sigma model
Autor: | F. C. E. Lima, C. A. S. Almeida |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | European Physical Journal C: Particles and Fields, Vol 81, Iss 11, Pp 1-8 (2021) |
Druh dokumentu: | article |
ISSN: | 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-021-09826-x |
Popis: | Abstract We investigate the presence of topological structures and multiple phase transitions in the O(3)-sigma model with the gauge field governed by Maxwell’s term and subject to a so-called Gausson’s self-dual potential. To carry out this study, it is numerically shown that this model supports topological solutions in 3-dimensional spacetime. In fact, to obtain the topological solutions, we assume a spherically symmetrical ansatz to find the solutions, as well as some physical behaviors of the vortex, as energy and magnetic field. It is presented a planar view of the magnetic field as an interesting configuration of a ring-like profile. To calculate the differential configurational complexity (DCC) of structures, the spatial energy density of the vortex is used. In fact, the DCC is important because it provides us with information about the possible phase transitions associated with the structures located in the Maxwell–Gausson model in 3D. Finally, we note from the DCC profile an infinite set of kink-like solutions associated with the parameter that controls the vacuum expectation value. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |