Popis: |
IntroductionThe dissemination of strains producing tetracyclines monooxygenase Tet(X) from breeding farms to the natural environment poses a potential threat to public health.MethodsAntimicrobial susceptibility testing and WGS were performed to identify resistance phenotypes and genotypes. Cloning experiments, sequence alignment, and homology modeling were used to characterize the function and formation mechanisms of the recombinant variant. The mobilization potential of Tet(X) was assessed by collinearity analysis, conjugation experiments, and phylogenetic analysis.ResultsThree tet(X)-producing Elizabethkingia meningoseptica strains were isolated from bullfrog breeding ponds, the sewage outlet, and downstream river in Zhejiang Province, China. These strains carry a novel Tet(X) variant, differing from Tet(X6) by seven residues, and possess the ability to degrade tetracyclines. Interestingly, the novel Tet(X) is a recombinant variant formed by homologous recombination of Tet(X6) and the C-terminal of Tet(X2). Further analysis revealed that Tet(X6) formed several Tet(X) variants, including Tet(X5), through homologous recombination. The novel tet(X) gene is located on a circularizable integrative and conjugative element (ICEEmeChn3), with ISwz1 participating in the recombination of its multi-drug resistance region, potentially facilitating the mobilization and recombination of tet(X) in early hosts. These three strains were clonally transmitted and shared a close genetic relationship (SNP |