Effects of Water-to-Cement Ratio on Pore Structure Evolution and Strength Development of Cement Slurry Based on HYMOSTRUC3D and Micro-CT

Autor: Shaojun Zheng, Tianle Liu, Guosheng Jiang, Changliang Fang, Bo Qu, Peng Gao, Lixia Li, Yingtao Feng
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Applied Sciences, Vol 11, Iss 7, p 3063 (2021)
Druh dokumentu: article
ISSN: 11073063
2076-3417
DOI: 10.3390/app11073063
Popis: Changing the water-to-cement ratio is one of the major ways to develop cement slurry with different densities, which in turn will greatly affect the pore structure and mechanical properties of cement slurry. In the current study, the cement hydration model HYMOSTRUC3D was used to investigate the effects of water-to-cement (w/c) ratio (0.40, 0.44, 0.50) on the pore structure evolution and strength development of cement slurry. The microstructure of the cement stone was characterized via scanning electron microscope (SEM) and micro-computed tomography (micro-CT), and the mechanical strength of the cement stone was tested and analyzed via a mechanical tester. The simulated compressive strength and capillary porosity are in good agreement with the measured data, where the relative error between the simulated results and measured results are within 0.6~10.7% and 13.04~25.31%, respectively. The capillary porosity is proved as the main factor affecting the compressive strength of cement stone with different w/c ratios. Herein, the mathematical relationship between the measured capillary porosity and compressive strength could be well fitted via the mathematical prediction models of the Balshin function (R2 = 0.95), Ryshkewitch function (R2 = 0.94), Schiller function (R2 = 0.96), and the linear regression function (R2 = 0.95). Moreover, the linear regression function (y = −2.38x + 82.76) can be used to characterize and predict the quantitative relationship between the compressive strength and capillary porosity of cement stone. The findings in this study will provide a reference value in the fields of oil and gas cementing and building concrete.
Databáze: Directory of Open Access Journals