Bayesian Aerosol Retrieval-Based PM2.5 Estimation through Hierarchical Gaussian Process Models

Autor: Junbo Zhang, Daoji Li, Yingzhi Xia, Qifeng Liao
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 16, p 2878 (2022)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10162878
Popis: Satellite-based aerosol optical depth (AOD) data are widely used to estimate land surface PM2.5 concentrations in areas not covered by ground PM2.5 monitoring stations. However, AOD data obtained from satellites are typically at coarse spatial resolutions, limiting their applications on small or medium scales. In this paper, we propose a new two-step approach to estimate 1-km-resolution PM2.5 concentrations in Shanghai using high spatial resolution AOD retrievals from MODIS. In the first step, AOD data are refined to a 1×1km2 resolution via a Bayesian AOD retrieval method. In the second step, a hierarchical Gaussian process model is used to estimate PM2.5 concentrations. We evaluate our approach by model fitting and out-of-sample cross-validation. Our results show that the proposed approach enjoys accurate predictive performance in estimating PM2.5 concentrations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje