Morita context and generalized (α, β)−derivations

Autor: Nadeem ur Rehman, Radwan Mohammed AL-Omary, Mohammed M. Al-Shomrani
Jazyk: English<br />Portuguese
Rok vydání: 2013
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 31, Iss 1, Pp 153-166 (2013)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.v31i1.13682
Popis: Let $R$ and $S$ be rings of a semi-projective Morita context, and $\alpha, \beta$ be automorphisms of $R$. An additive mapping $F$: $R\to R$ is called a generalized $(\alpha,\beta)$-derivation on $R$ if there exists an $(\alpha,\beta)$-derivation $d$: $R\to R$ such that $F(xy)=F(x)\alpha(y)+\beta(x)d(y)$ holds for all $x,y \in R$. For any $x,y \in R$, set $[x, y]_{\alpha, \beta} = x \alpha(y) - \beta(y) x$ and $(x \circ y)_{\alpha, \beta} = x \alpha(y) + \beta(y) x$. In the present paper, we shall show that if the ring $S$ is reduced then it is a commutative, in a compatible way with the ring $R$ . Also, we obtain some results on bialgebras via Cauchy modules.
Databáze: Directory of Open Access Journals