Some subvarieties of semiring variety COS$ ^{+}_{3} $

Autor: Xuliang Xian, Yong Shao, Junling Wang
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: AIMS Mathematics, Vol 7, Iss 3, Pp 4293-4303 (2022)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2022237?viewType=HTML
Popis: In this paper, we study some subvarieties of a semiring variety determined by certain additional identities. We first present alternative characterizations for equivalences $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{L}} $, $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{R}} $, $ \overset{+}{\mathcal{H}}{\cap}\overset{\cdot}{\mathcal{D}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{L}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{R}} $, $ \overset{+}{\mathcal{H}}{\vee}\overset{\cdot}{\mathcal{D}} $. Then we give the sufficient and necessary conditions for these equivalences to be congruence. Finally, we prove that semiring classes defined by these congruences are varieties and provide equational bases.
Databáze: Directory of Open Access Journals