Inequalities for generalized Riemann–Liouville fractional integrals of generalized strongly convex functions

Autor: Ghulam Farid, Young Chel Kwun, Hafsa Yasmeen, Abdullah Akkurt, Shin Min Kang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-25 (2021)
Druh dokumentu: article
ISSN: 1687-1847
DOI: 10.1186/s13662-021-03548-w
Popis: Abstract Some new integral inequalities for strongly ( α , h − m ) $(\alpha ,h-m)$ -convex functions via generalized Riemann–Liouville fractional integrals are established. The outcomes of this paper provide refinements of some fractional integral inequalities for strongly convex, strongly m-convex, strongly ( α , m ) $(\alpha ,m)$ -convex, and strongly ( h − m ) $(h-m)$ -convex functions. Also, the refinements of error estimations of these inequalities are obtained by using two fractional integral identities. Moreover, using a parameter substitution and a constant multiplier, k-fractional versions of established inequalities are also given.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje