Numerical Modeling of Energetic Charged-particle Transport with SPECTRUM Software: General Approach and Artificial Effects due to Field Discretization
Autor: | J. G. Alonso Guzmán, V. Florinski, G. Tóth, S. Sharma, B. van der Holst, M. Opher |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | The Astrophysical Journal Supplement Series, Vol 272, Iss 2, p 46 (2024) |
Druh dokumentu: | article |
ISSN: | 1538-4365 0067-0049 |
DOI: | 10.3847/1538-4365/ad4637 |
Popis: | Test-particle simulations are an important tool for magnetospheric and heliophysics research. In this paper, we present the Space Plasma and Energetic Charged particle TRansport on Unstructured Meshes (SPECTRUM) software as a novel tool for performing these types of simulations in arbitrary astrophysical environments, specified either analytically or numerically (i.e., on a grid). We discuss and benchmark SPECTRUM’s interface with meshed magnetohydrodynamic backgrounds, including output from the Block Adaptive Tree Solar-wind Roe-type Upwind Scheme (BATS-R-US) code. We also investigate the effects of field discretization on both deterministic and stochastic particle motion, with emphasis on space science applications, concluding that the discretization error typically enhances the diffusive behavior of the ensemble. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |