A Reliable Protection Scheme for Fast DC Fault Clearance in a VSC-Based Meshed MTDC Grid

Autor: Rifat Ara, Umer Amir Khan, Aamir Iqbal Bhatti, Bang Wook Lee
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: IEEE Access, Vol 8, Pp 88188-88199 (2020)
Druh dokumentu: article
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2020.2993001
Popis: A multi-terminal high voltage DC (MTDC) grid, is an optimum and cost-effective transmission network to minimize the energy crisis worldwide largely. However, the core demand for a fast DC protection scheme with an extraordinary strict fault clearance time of a few milliseconds, is a key research gap in this network, holding back its development and scalability. To bridge this gap, this paper proposes a novel protection scheme for a meshed MTDC grid. The main goals of the scheme include accurate discrimination of a faulty line, rapid fault detection, fault location estimation, significant fault current reduction, and fully selective isolation of only the faulted line, while continuing normal power flow in the healthy grid zones. Reliability of the scheme for long and extra-long-distance power transmission is increased by aiding the differential protection and Type-D traveling wave (TW)-based algorithms utilizing the distributed optical current sensing technology with the other auxiliary methods and backup plans. These auxiliary methods include independent discrete wavelet transform (DWT), current derivative polarity principles with a minimum sample (short time) window, overcurrent relays, and AC circuit breakers (ACCBs). A faulty segment of a transmission line is accurately discriminated from the healthy ones by measuring a series of multi-point differential currents on it. A faulty line at a particular DC node is accurately discriminated using the differential protection by measuring the current flowing into or out of each line from each side at every node to obtain the algebraic sum. The current sum of a real-time local transient data and a delayed remote data is compared to a preset threshold level. DC fault current is significantly reduced below the breakable levels by coordinating bidirectional hybrid DC circuit breakers (HDCCBs) with the active and passive fault current limiters (FCLs) and the half bridge-VSC-based modular multilevel converters (MMCs). The proposed concepts are successfully verified by the simulation results under a variety of fault scenarios and are found to be accurate.
Databáze: Directory of Open Access Journals