R-Linear Conjugation Problem on the Unit Circle in the Parabolic Case
Autor: | S. V. Rogosin, L. P. Primachuk, M. V. Dubatovskaya |
---|---|
Jazyk: | English<br />Russian |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Учёные записки Казанского университета. Серия Физико-математические науки, Vol 166, Iss 2 (2024) |
Druh dokumentu: | article |
ISSN: | 2541-7746 2500-2198 |
DOI: | 10.26907/2541-7746.2024.2.250-261 |
Popis: | A solution to the R-linear conjugation problem (Markushevich boundary value problem) on the unit circle was proposed. This problem is analogous to the vector-matrix Riemann boundary value problem with the coefficient degenerating in the parabolic case (the coefficient is a triangular matrix function). A complete description of the factorization of the matrix coefficient was provided. Its partial indices were calculated. The method used is based on G.N. Chebotarev’s algorithm and has been developed in a series of author’s articles. The resulting factorization confirms the solvability of the R-linear conjugation problem on the unit circle in the parabolic case. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |