Schrodinger-Poisson systems with singular potential and critical exponent

Autor: Senli Liu, Haibo Chen, Zhaosheng Feng
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Electronic Journal of Differential Equations, Vol 2020, Iss 130,, Pp 1-17 (2020)
Druh dokumentu: article
ISSN: 1072-6691
Popis: In this article we study the Schrodinger-Poisson system $$\displaylines{ -\Delta u +V(|x|)u+\lambda\phi u = f(u), \quad x\in\mathbb{R}^3, \cr -\Delta \phi =u^2, \quad x\in\mathbb{R}^3, }$$ where V is a singular potential with the parameter $\alpha$ and the nonlinearity f satisfies critical growth. By applying a generalized version of Lions-type theorem and the Nehari manifold theory, we establish the existence of the nonnegative ground state solution when $\lambda=0$. By the perturbation method, we obtain a nontrivial solution to above system when $\lambda\neq 0$.
Databáze: Directory of Open Access Journals