A highly conserved Toxo1 haplotype directs resistance to toxoplasmosis and its associated caspase-1 dependent killing of parasite and host macrophage.

Autor: Pierre Cavailles, Pierre Flori, Olivier Papapietro, Cordelia Bisanz, Dominique Lagrange, Ludovic Pilloux, Céline Massera, Sara Cristinelli, Delphine Jublot, Olivier Bastien, Corinne Loeuillet, Delphine Aldebert, Bastien Touquet, Gilbert J Fournié, Marie France Cesbron-Delauw
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: PLoS Pathogens, Vol 10, Iss 4, p e1004005 (2014)
Druh dokumentu: article
ISSN: 1553-7366
1553-7374
DOI: 10.1371/journal.ppat.1004005
Popis: Natural immunity or resistance to pathogens most often relies on the genetic make-up of the host. In a LEW rat model of refractoriness to toxoplasmosis, we previously identified on chromosome 10 the Toxo1 locus that directs toxoplasmosis outcome and controls parasite spreading by a macrophage-dependent mechanism. Now, we narrowed down Toxo1 to a 891 kb interval containing 29 genes syntenic to human 17p13 region. Strikingly, Toxo1 is included in a haplotype block strictly conserved among all refractory rat strains. The sequencing of Toxo1 in nine rat strains (5 refractory and 4 susceptible) revealed resistant-restricted conserved polymorphisms displaying a distribution gradient that peaks at the bottom border of Toxo1, and highlighting the NOD-like receptor, Nlrp1a, as a major candidate. The Nlrp1 inflammasome is known to trigger, upon pathogen intracellular sensing, pyroptosis programmed-cell death involving caspase-1 activation and cleavage of IL-1β. Functional studies demonstrated that the Toxo1-dependent refractoriness in vivo correlated with both the ability of macrophages to restrict T. gondii growth and a T. gondii-induced death of intracellular parasites and its host macrophages. The parasite-induced cell death of infected macrophages bearing the LEW-Toxo1 alleles was found to exhibit pyroptosis-like features with ROS production, the activation of caspase-1 and IL1-β secretion. The pharmacological inactivation of caspase-1 using YVAD and Z-VAD inhibitors prevented the death of both intravacuolar parasites and host non-permissive macrophages but failed to restore parasite proliferation. These findings demonstrated that the Toxo1-dependent response of rat macrophages to T. gondii infection may trigger two pathways leading to the control of parasite proliferation and the death of parasites and host macrophages. The NOD-like receptor NLRP1a/Caspase-1 pathway is the best candidate to mediate the parasite-induced cell death. These data represent new insights towards the identification of a major pathway of innate resistance to toxoplasmosis and the prediction of individual resistance.
Databáze: Directory of Open Access Journals