Maximum Power Point Tracking Based on Reinforcement Learning Using Evolutionary Optimization Algorithms
Autor: | Kostas Bavarinos, Anastasios Dounis, Panagiotis Kofinas |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Energies, Vol 14, Iss 2, p 335 (2021) |
Druh dokumentu: | article |
ISSN: | 14020335 1996-1073 |
DOI: | 10.3390/en14020335 |
Popis: | In this paper, two universal reinforcement learning methods are considered to solve the problem of maximum power point tracking for photovoltaics. Both methods exhibit fast achievement of the MPP under varying environmental conditions and are applicable in different PV systems. The only required knowledge of the PV system are the open-circuit voltage, the short-circuit current and the maximum power, all under STC, which are always provided by the manufacturer. Both methods are compared to a Fuzzy Logic Controller and the universality of the proposed methods is highlighted. After the implementation and the validation of proper performance of both methods, two evolutionary optimization algorithms (Big Bang—Big Crunch and Genetic Algorithm) are applied. The results demonstrate that both methods achieve higher energy production and in both methods the time for tracking the MPP is reduced, after the application of both evolutionary algorithms. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |