Autor: |
Mengxi Liu, Yuanyuan Li, Zehui Zheng, Lin Li, Jianjun Hao, Shuang Liu, Yaya Wang, Chuanren Qi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Fermentation, Vol 10, Iss 4, p 201 (2024) |
Druh dokumentu: |
article |
ISSN: |
2311-5637 |
DOI: |
10.3390/fermentation10040201 |
Popis: |
This study examined the impact of sodium propionate concentration (0–40 g/L) on the methanogenic archaea in an inoculum which was cultured in basal nutrient medium, exploring its mechanisms and nonlinear stress intensity. The results indicated that at low concentrations, propionate-maintained homeostasis of the anaerobic digestion (AD) system and enriched Methanosaeta. However, when the concentration exceeded 16 g/L, the stability of the AD system was disrupted. The methanogenic pathway shifted towards a predominantly hydrogenotrophic pathway, resulting in a significant increase in methane yield. Below concentrations of 28 g/L, the AD system gradually enhanced its ability to utilize propionate in an orderly manner. At concentrations of 24–28 g/L, genera (e.g., Advenella and Methanosarcina) were enriched to adapt to the high-VFA environment. This was accompanied by a significant upregulation of genes related to the methylotrophic and hydrogenotrophic pathways, effectively mitigating propionate inhibition and enhancing methanogenesis. Conversely, excess concentrations (>30 g/L) suppressed methanogenesis-related genes and led to methane production arrest despite activating specialized propionate-metabolizing bacteria such as genus Pelotomaculum schinkii. As such, an increase in the stress intensity of propionate promotes a change in the metabolic pathways of methanogens and increases methane production; however, excessive sodium propionate was not conducive to maintaining the steady state of the system. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|