Autor: |
Luca Filippi, Patrizia Nardini, Virginia Zizi, Marta Molino, Camilla Fazi, Maura Calvani, Francesco Carrozzo, Giacomo Cavallaro, Giorgia Giuseppetti, Laura Calosi, Olivia Crociani, Alessandro Pini |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Biomolecules, Vol 13, Iss 12, p 1755 (2023) |
Druh dokumentu: |
article |
ISSN: |
2218-273X |
DOI: |
10.3390/biom13121755 |
Popis: |
Oxygen level is a key regulator of organogenesis and its modification in postnatal life alters the maturation process of organs, including the intestine, which do not completely develop in utero. The β3-adrenoreceptor (β3-AR) is expressed in the colon and has an oxygen-dependent regulatory mechanism. This study shows the effects of the β3-AR agonist BRL37344 in a neonatal model of hyperoxia-driven colonic injury. For the first 14 days after birth, Sprague–Dawley rat pups were exposed to ambient oxygen levels (21%) or hyperoxia (85%) and treated daily with BRL37344 at 1, 3, 6 mg/kg or untreated. At the end of day 14, proximal colon samples were collected for analysis. Hyperoxia deeply influences the proximal colon development by reducing β3-AR-expressing cells (27%), colonic length (26%) and mucin production (47%), and altering the neuronal chemical coding in the myenteric plexus without changes in the neuron number. The administration of BRL37344 at 3 mg/kg, but not at 1 mg/kg, significantly prevented these alterations. Conversely, it was ineffective in preventing hyperoxia-induced body weight loss. BRL37344 at 6 mg/kg was toxic. These findings pave the way for β3-AR pharmacological targeting as a therapeutic option for diseases caused by hyperoxia-impaired development, typical prematurity disorders. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|