Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks

Autor: Mohamed Marouf, Pierre Machart, Vikas Bansal, Christoph Kilian, Daniel S. Magruder, Christian F. Krebs, Stefan Bonn
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-019-14018-z
Popis: Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.
Databáze: Directory of Open Access Journals