Autor: |
Palash Sashittal, Haochen Zhang, Christine A. Iacobuzio-Donahue, Benjamin J. Raphael |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Genome Biology, Vol 24, Iss 1, Pp 1-23 (2023) |
Druh dokumentu: |
article |
ISSN: |
1474-760X |
DOI: |
10.1186/s13059-023-03106-5 |
Popis: |
Abstract A tumor contains a diverse collection of somatic mutations that reflect its past evolutionary history and that range in scale from single nucleotide variants (SNVs) to large-scale copy-number aberrations (CNAs). However, no current single-cell DNA sequencing (scDNA-seq) technology produces accurate measurements of both SNVs and CNAs, complicating the inference of tumor phylogenies. We introduce a new evolutionary model, the constrained k -Dollo model, that uses SNVs as phylogenetic markers but constrains losses of SNVs according to clusters of cells. We derive an algorithm, ConDoR, that infers phylogenies from targeted scDNA-seq data using this model. We demonstrate the advantages of ConDoR on simulated and real scDNA-seq data. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|