Popis: |
Compounds with a pyrrolidine scaffold play an important role in organic synthesis and especially in the synthesis of bioactive organic compounds, therefore, the development of new methods for modifying this scaffold is a very interesting framework of this study. We developed a rational approach for the synthesis of 1,2,3-trazolylchalcone substituted pyrrolidines derivatives, which were then examined using a variety of spectroscopic techniques such as 1H NMR, 13C NMR, FT-IR, mass spectroscopy and elemental analysis. Biological profiles showed that compounds 5e, 5h had better antibacterial inhibitory potency against S. aureus, E. coli with zone of inhibition 34 ± 0.1, 33 ± 0.3 mm, whereas 5a, 5e showed potent antifungal activity against C. parapsilosis, A. flavus with dimeter zone of inhibition 26 ± 0.2, and 30 ± 0.2 mm respectively. Among the tested compounds 5b, and 5h were the most potent antitubercular activity against Mycobacterium tuberculosis H37Rv and showing MIC values 5.23 µg/mL, 6.85 µg/mL respectively, which are similar activity that of the standard Streptomycin (MIC = 5.02 µg/mL). The binding mode for compound 5 inside the catalytic pocket of M. tuberculosis cytochrome P450 CYP121A1 and produced a network of hydrophobic and hydrophilic interactions (6GEO). From docking results, 5b demonstrated highly stable binding amino acids SerA:237, ArgA:386, ArgA:286, CysA:345, MetA:62, GlnA:385, AspA:282, PheA:280, LeuA:284, ValA:83, ProA:285, AlaA:337, HisA:343, AsnA:74, and ThrA:65, which are plays a crucial role in ensuring efficient binding of the ligand in a crystal structure of tubercular receptor. Furthermore, the physicochemical and ADME (absorption, distribution, metabolism, and excretion) filtration molecular properties, estimation of toxicity, and bioactivity scores of these scaffolds were evaluated. |