Autor: |
Chang-Soo Lee, Seok Jae Lee, Jae Jun Song, Tae Jung Park, Jung Youn Park, Kyoung G. Lee, Soon Woo Jeong, Byeong Il Kim |
Jazyk: |
angličtina |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
Sensors, Vol 12, Iss 8, Pp 10136-10147 (2012) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s120810136 |
Popis: |
Bioactive microcapsules containing Bacillus thuringiensis (BT) spores were generated by a combination of a hydro gel, microfluidic device and chemical polymerization method. As a proof-of-principle, we used BT spores displaying enhanced green fluorescent protein (EGFP) on the spore surface to spatially direct the EGFP-presenting spores within microcapsules. BT spore-encapsulated microdroplets of uniform size and shape are prepared through a flow-focusing method in a microfluidic device and converted into microcapsules through hydrogel polymerization. The size of microdroplets can be controlled by changing both the dispersion and continuous flow rate. Poly(N-isoproplyacrylamide) (PNIPAM), known as a hydrogel material, was employed as a biocompatible material for the encapsulation of BT spores and long-term storage and outstanding stability. Due to these unique properties of PNIPAM, the nutrients from Luria-Bertani complex medium diffused into the microcapsules and the microencapsulated spores germinated into vegetative cells under adequate environmental conditions. These results suggest that there is no limitation of transferring low-molecular-weight-substrates through the PNIPAM structures, and the viability of microencapsulated spores was confirmed by the culture of vegetative cells after the germinations. This microfluidic-based microencapsulation methodology provides a unique way of synthesizing bioactive microcapsules in a one-step process. This microfluidic-based strategy would be potentially suitable to produce microcapsules of various microbial spores for on-site biosensor analysis. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|