Radiomics model using preoperative computed tomography angiography images to differentiate new from old emboli of acute lower limb arterial embolism

Autor: Liu Rong, Yang Junlin, Zhang Wei, Li Xiaobo, Shi Dai, Cai Wu, Zhang Yue, Fan Guohua, Li Chenglong, Jiang Zhen
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Open Medicine, Vol 18, Iss 1, Pp 57-64 (2023)
Druh dokumentu: article
ISSN: 2391-5463
DOI: 10.1515/med-2023-0671
Popis: Our purpose was to devise a radiomics model using preoperative computed tomography angiography (CTA) images to differentiate new from old emboli of acute lower limb arterial embolism. 57 patients (95 regions of interest; training set: n = 57; internal validation set: n = 38) with femoral popliteal acute lower limb arterial embolism confirmed by pathology and with preoperative CTA images were retrospectively analyzed. We selected the best prediction model according to the model performance tested by area under the curve (AUC) analysis across 1,000 iterations of prediction from three most common machine learning methods: support vector machine, feed-forward neural network (FNN), and random forest, through several steps of feature selection. Then, the selected best model was also validated in an external validation dataset (n = 24). The established radiomics signature had good predictive efficacy. FNN exhibited the best model performance on the training and validation groups: its AUC value was 0.960 (95% CI, 0.899–1). The accuracy of this model was 89.5%, and its sensitivity and specificity were 0.938 and 0.864, respectively. The AUC of external validation dataset was 0.793. Our radiomics model based on preoperative CTA images is valuable. The radiomics approach of preoperative CTA to differentiate new emboli from old is feasible.
Databáze: Directory of Open Access Journals