Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold
Autor: | Sajad Sahab Negah, Hadi Aligholi, Zabihollah Khaksar, Hadi Kazemi, Sayed Mostafa Modarres Mousavi, Maryam Safahani, Parastoo Barati Dowom, Ali Gorji |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Iranian Journal of Basic Medical Sciences, Vol 19, Iss 12, Pp 1271-1278 (2016) |
Druh dokumentu: | article |
ISSN: | 2008-3866 2008-3874 |
DOI: | 10.22038/ijbms.2016.7907 |
Popis: | Objective(s): In order to grow cells in a three-dimensional (3D) microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma stem-like cells (hMgSCs). Materials and Methods: The efficacy of a novel method for placing hMgSCs in PuraMatrix (the injection approach) was compared to the encapsulation and surface plating methods. In addition, we designed a new method for measurement of migration distance in 3D cultivation of hMgSCs in PuraMatrix. Results: Our results revealed that hMgSCs have the ability to form spheres in stem cell culture condition. These meningioma cells expressed GFAP, CD133, vimentin, and nestin. Using the injection method, a higher proliferation rate of the hMgSCs was observed after seven days of culture. Furthermore, the novel migration assay was able to measure the migration of a single cell alone in 3D environment. Conclusion: The results indicate the injection method as an efficient technique for culturing hMgSCs in PuraMatrix. Furthermore, the novel migration assay enables us to evaluate the migration of hMgSCs. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |