Autor: |
Abraham Lauer, Jesse Devaney, Chanh Kieu, Ben Kravitz, Travis A. O'Brien, Scott M. Robeson, Paul W. Staten, The Anh Vu |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Geoscience Data Journal, Vol 10, Iss 4, Pp 429-446 (2023) |
Druh dokumentu: |
article |
ISSN: |
2049-6060 |
DOI: |
10.1002/gdj3.188 |
Popis: |
Abstract Climate change is expected to have far‐reaching effects at both the global and regional scale, but local effects are difficult to determine from coarse‐resolution climate studies. Dynamical downscaling can provide insight into future climate projections on local scales. Here, we present a new dynamically downscaled dataset for Indiana and the surrounding regions. Output from the Community Earth System Model (CESM) version 1 is downscaled using the Weather Research and Forecasting model (WRF). Simulations are run with a 24‐hr reinitialization strategy and a 12‐hr spin‐up window. WRF output is bias corrected to the National Centers for Environmental Protection/National Center for Atmospheric Research 40‐year Reanalysis project (NCEP) using a modified quantile mapping method. Bias‐corrected 2‐m air temperature and accumulated precipitation are the initial focus, with additional variables planned for future releases. Regional climate change signals agree well with larger global studies, and local fine‐scaled features are visible in the resulting dataset, such as urban heat islands, frontal passages, and orographic temperature gradients. This high‐resolution climate dataset could be used for down‐stream applications focused on impacts across the domain, such as urban planning, energy usage, water resources, agriculture and public health. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|