Prediction of Machine Failure in Industry 4.0: A Hybrid CNN-LSTM Framework

Autor: Abdul Wahid, John G. Breslin, Muhammad Ali Intizar
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Applied Sciences, Vol 12, Iss 9, p 4221 (2022)
Druh dokumentu: article
ISSN: 2076-3417
DOI: 10.3390/app12094221
Popis: The proliferation of sensing technologies such as sensors has resulted in vast amounts of time-series data being produced by machines in industrial plants and factories. There is much information available that can be used to predict machine breakdown and degradation in a given factory. The downtime of industrial equipment accounts for heavy losses in revenue that can be reduced by making accurate failure predictions using the sensor data. Internet of Things (IoT) technologies have made it possible to collect sensor data in real time. We found that hybrid modelling can result in efficient predictions as they are capable of capturing the abstract features which facilitate better predictions. In addition, developing effective optimization strategy is difficult because of the complex nature of different sensor data in real time scenarios. This work proposes a method for multivariate time-series forecasting for predictive maintenance (PdM) based on a combination of convolutional neural networks and long short term memory with skip connection (CNN-LSTM). We experiment with CNN, LSTM, and CNN-LSTM forecasting models one by one for the prediction of machine failures. The data used in this experiment are from Microsoft’s case study. The dataset provides information about the failure history, maintenance history, error conditions, and machine features and telemetry, which consists of information such as voltage, pressure, vibration, and rotation sensor values recorded between 2015 and 2016. The proposed hybrid CNN-LSTM framework is a two-stage end-to-end model in which the LSTM is leveraged to analyze the relationships among different time-series data variables through its memory function, and 1-D CNNs are responsible for effective extraction of high-level features from the data. Our method learns the long-term patterns of the time series by extracting the short-term dependency patterns of different time-series variables. In our evaluation, CNN-LSTM provided the most reliable and highest prediction accuracy.
Databáze: Directory of Open Access Journals