Exact recovery of sparse multiple measurement vectors by l 2 , p $l_{2,p}$ -minimization

Autor: Changlong Wang, Jigen Peng
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-18 (2018)
Druh dokumentu: article
ISSN: 1029-242X
DOI: 10.1186/s13660-017-1601-y
Popis: Abstract The joint sparse recovery problem is a generalization of the single measurement vector problem widely studied in compressed sensing. It aims to recover a set of jointly sparse vectors, i.e., those that have nonzero entries concentrated at a common location. Meanwhile l p $l_{p}$ -minimization subject to matrixes is widely used in a large number of algorithms designed for this problem, i.e., l 2 , p $l_{2,p}$ -minimization min X ∈ R n × r ∥ X ∥ 2 , p s.t. A X = B . $$\begin{aligned} \min_{X \in\mathbb {R}^{n\times r}} \Vert X \Vert _{2,p}\quad \text{s.t. }AX=B. \end{aligned}$$ Therefore the main contribution in this paper is two theoretical results about this technique. The first one is proving that in every multiple system of linear equations there exists a constant p ∗ $p^{\ast}$ such that the original unique sparse solution also can be recovered from a minimization in l p $l_{p}$ quasi-norm subject to matrixes whenever 0 < p < p ∗ $0< p
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje