The super-connectivity of Johnson graphs

Autor: Gülnaz Boruzanlı Ekinci, John Baptist Gauci
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Discrete Mathematics & Theoretical Computer Science, Vol vol. 22 no. 1, Iss Graph Theory (2020)
Druh dokumentu: article
ISSN: 1365-8050
DOI: 10.23638/DMTCS-22-1-12
Popis: For positive integers $n,k$ and $t$, the uniform subset graph $G(n, k, t)$ has all $k$-subsets of $\{1,2,\ldots, n\}$ as vertices and two $k$-subsets are joined by an edge if they intersect at exactly $t$ elements. The Johnson graph $J(n,k)$ corresponds to $G(n,k,k-1)$, that is, two vertices of $J(n,k)$ are adjacent if the intersection of the corresponding $k$-subsets has size $k-1$. A super vertex-cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super-connectivity is the size of a minimum super vertex-cut. In this work, we fully determine the super-connectivity of the family of Johnson graphs $J(n,k)$ for $n\geq k\geq 1$.
Databáze: Directory of Open Access Journals