Widely Targeted Metabolomics Method Reveals Differences in Volatile and Nonvolatile Metabolites in Three Different Varieties of Raw Peanut by GC–MS and HPLC–MS

Autor: Jiantao Fu, Yuxing An, Dao Yao, Lijun Chen, Liwen Zhou, Dachun Shen, Sixing Dai, Yinglin Lu, Donglei Sun
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Molecules, Vol 29, Iss 22, p 5230 (2024)
Druh dokumentu: article
ISSN: 1420-3049
DOI: 10.3390/molecules29225230
Popis: The aim of the present study was to comprehensively analyze and identify the metabolites of different varieties of raw peanut, as well as provide a reference for the utilization of different varieties of peanuts. In this study, three varieties of peanuts, namely ZKH1H, ZKH13H, and CFD, were investigated via ultrahigh-performance liquid chromatography (UPLC) and widely targeted metabolomics methods based on tandem mass spectrometry (MS) and solid-phase microextraction-gas chromatography–mass spectrometry (SPME-GC–MS). In total, 417 nonvolatile and 55 volatile substances were detected. The nonvolatile substances were classified into the following 10 categories: organic acids and derivatives (28.9%); organic oxygen compounds (21.9%); lipids and lipid-like molecules (12.6%); organoheterocyclic compounds (9.9%); nucleosides, nucleotides, and analogues (9.4%); benzenoids (7.8%); phenylpropanoids and polyketides (6.1%); organic nitrogen compounds (2.7%); lignans, neolignans, and related compounds (0.5%); and alkaloids and their derivatives (0.3%). The volatile compounds (VOCs) were classified into the following eight categories: organic oxygen compounds (24.1%); organic cyclic compounds (20.4%); organic nitrogen compounds (13%); organic acids and their derivatives (13%); lipids and lipid-like molecules (11.2%); benzenoids (11.1%); hydrocarbons (3.7%); and homogeneous non-metallic compounds (3.7%). Differentially abundant metabolites among the different peanut varieties (ZKH13H vs. CFD, ZKH1H vs. CFD, and ZKH1H vs. ZKH13H) were investigated via multivariate statistical analyses, which identified 213, 204, and 157 nonvolatile differentially abundant metabolites, respectively, and 12, 11, and 10 volatile differentially abundant metabolites, respectively. KEGG metabolic pathway analyses of the differential non-VOCs revealed that the most significant metabolic pathways among ZKH13H vs. CFD, ZKH1H vs. CFD, and ZKH1H vs. ZKH13H were galactose metabolism, purine metabolism, and aminoacyl-tRNA, while the nitrogen metabolism pathway was identified as a significant metabolic pathway for the VOCs. The present findings provide a theoretical foundation for the development and utilization of these three peanut species, as well as for the breeding of new peanut varieties.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje