Autor: |
Wolfgang Tillmann, Nelson Filipe Lopes Dias, Dominic Stangier, Christopher Schaak, Simon Höges |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Materials & Design, Vol 213, Iss , Pp 110304- (2022) |
Druh dokumentu: |
article |
ISSN: |
0264-1275 |
DOI: |
10.1016/j.matdes.2021.110304 |
Popis: |
Diamond-like carbon (DLC) coatings deposited on additively manufactured steel greatly improve the tribological properties. However, a high substrate hardness is crucial to sustaining high mechanical loads in the tribological contact. Herein, the heat treatment of binder jet printed 17–4 PH enhances the hardness from 24 to 39 HRC. Binder jet printed 17–4 PH substrates are coated by DLC of the types hydrogen-free amorphous carbon (a-C) of ∼23 GPa and hydrogenated amorphous carbon (a-C:H) of ∼20 GPa. The influence of the heat treatment on the tribo-mechanical properties of the DLC coatings is investigated. 17–4 PH demonstrates high friction and wear against steel counterparts, but the wear rate is reduced from 693 ± 43 × 10–6 mm3/Nm to 492 ± 41 × 10-6 mm3/Nm by heat treating the steel. Both a–C and a–C:H are effective in reducing the friction and wear with wear rates below 0.3 × 10–6 mm3/Nm. The a–C and a–C:H coatings demonstrate lower plastic wear on heat treated 17–4 PH due to the higher substrate hardness. Consequently, the heat treatment is an essential process step to ensure maximum tribological functionality of the DLC coating on additively manufactured 17–4 PH steel. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|