Autor: |
Yansong BAO, Lingxiao JI, Huan LI, Qifeng LU, Fu WANG |
Jazyk: |
čínština |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Gaoyuan qixiang, Vol 43, Iss 2, Pp 293-302 (2024) |
Druh dokumentu: |
article |
ISSN: |
1000-0534 |
DOI: |
10.7522/j.issn.1000-0534.2023.00051 |
Popis: |
The Qinghai-Xizang Plateau has complex terrain and climate, which is a great challenge to the airdrop parachute landing and aviation safety.This research focuses on Qinghai-Xizang Plateau wind field simulation in boundary layer based on numerical calculation method.Firstly, the study built a WRF-LES system and scaled down to 40 m horizontal resolution based on the large eddy simulation (LES) scheme of WRF (Weather Research and Forecasting) model, and undertook the application study of large eddy simulation on the Qinghai-Xizang Plateau.Based on a strong wind case over the Qinghai-Xizang Plateau, the impacts of LES scheme and terrain elevation data on wind field simulation were evaluated through sensitivity tests.Then, the parameters in the standard sub-grid turbulent stress models of LES scheme were analyzed, and the optimal schemes for wind field simulation on the Qinghai-Xizang Plateau was obtained.Finally, a batch test was conducted to verify the applicability of the optimal schemes to the Qinghai-Xizang Plateau wind field simulation.The test results show that the WRF-LES system with a resolution of 40 m can simulate more precise and accurate wind field information, and the MAE (Mean Absolute Error) of simulated wind speed is reduced by 1.4 m·s-1 and the RMSE (Root Mean Square Error) is reduced by 1.81 m·s-1 compared with the ACM2 scheme; The high-precision ASTER terrain data can also improve the effect of wind field simulation, and the error is approximately deduced by 0.2 m·s-1; The LES scheme that use 1.5-order turbulent flow energy scheme and set parameter coefficient 0.1 has the best simulation result, and the MAE is 1.56 m·s-1 and RMSE is 2.06 m·s-1; The batch test verifies that the large eddy simulation scheme is fit for the wind simulation on the Qinghai-Xizang Plateau, and the wind field simulation results in the 40 m resolution is significantly better than in the mesoscale resolution.The result shows that WRF-LES system can provide accurate wind field information for the parachute landing on the plateau. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|