Autor: |
Erika P. Ramos, Abdeljalil Assoud, Laidong Zhou, Abhinandan Shyamsunder, Daniel Rettenwander, Linda F. Nazar |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
APL Materials, Vol 11, Iss 1, Pp 011104-011104-8 (2023) |
Druh dokumentu: |
article |
ISSN: |
2166-532X |
DOI: |
10.1063/5.0129001 |
Popis: |
We report a new ion conductor—Na11Sn2SbSe12—as a possible candidate for a solid catholyte in composite cathodes for all-solid state Na-batteries, which exhibits a room temperature ionic conductivity of 0.15 ± 0.03 mS cm−1 and an activation energy of 0.39 ± 0.02 eV. The sulfide solid solutions of Na11Sn2SbSe12, namely, Na11Sn2SbS12−xSex (x = 1 and 6), were also investigated through a combination of Rietveld refinement against powder x-ray diffraction data and electrochemical impedance spectroscopy to reveal the complex structure–property relationships governing ion transport in this class of materials. Meanwhile, broadening of the Na-ion diffusion pathways in Na11Sn2SbSe12 is expected to facilitate Na-ion transport compared to the sulfide-rich member of the solid solution, the opposite holds: increasing the Se fraction in Na11Sn2SbS12−xSex leads to a little change in the activation energy but a reduction in the ionic conductivity. We ascribe this to the lowering of the prefactor, σ0, in the Arrhenius relationship with increasing lattice “softening” as a function of higher Se content. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|