Generative model based on junction tree variational autoencoder for HOMO value prediction and molecular optimization

Autor: Vladimir Kondratyev, Marian Dryzhakov, Timur Gimadiev, Dmitriy Slutskiy
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Journal of Cheminformatics, Vol 15, Iss 1, Pp 1-12 (2023)
Druh dokumentu: article
ISSN: 1758-2946
DOI: 10.1186/s13321-023-00681-4
Popis: Abstract In this work, we provide further development of the junction tree variational autoencoder (JT VAE) architecture in terms of implementation and application of the internal feature space of the model. Pretraining of JT VAE on a large dataset and further optimization with a regression model led to a latent space that can solve several tasks simultaneously: prediction, generation, and optimization. We use the ZINC database as a source of molecules for the JT VAE pretraining and the QM9 dataset with its HOMO values to show the application case. We evaluate our model on multiple tasks such as property (value) prediction, generation of new molecules with predefined properties, and structure modification toward the property. Across these tasks, our model shows improvements in generation and optimization tasks while preserving the precision of state-of-the-art models.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje