Autor: |
Xuyuan Gao, Zhenya Tian, Yan Zhang, Guangmei Chen, Chao Ma, Zhenqi Tian, Shaowei Cui, Yongyue Lu, Zhongshi Zhou |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Frontiers in Physiology, Vol 11 (2020) |
Druh dokumentu: |
article |
ISSN: |
1664-042X |
DOI: |
10.3389/fphys.2020.00417 |
Popis: |
Increase in atmospheric CO2 directly affects the insect physiology and behavior, and indirectly affects the herbivorous insects by affecting their hosts. The increase in atmospheric CO2 is accompanied by an increase in temperature and heat waves. Ophraella communa LeSage is a natural enemy of Ambrosia artemisiifolia (common ragweed). The development and reproduction of this beetle is weakened upon eating common ragweed grown under stress conditions. As female behavior and physiology alter after mating, the reproductive tract of males is likely to modulate reproduction and development in this species. Herein, the transcriptional profiles of testes and accessory glands from male O. communa individuals feeding on common ragweed under conditions of high CO2 concentration and heat waves and that grown under ambient CO2 concentration were compared. Differentially expressed genes (DEGs) were identified between the same tissues from beetles fed on common ragweed grown under different stress conditions. There were 3, 2, 3, 1and 5 genes related to decomposition and transport of macromolecular substances, host location, stress response, reproduction, and poisonous food-utilization. No expected response was observed in the male reproductive tract, but some of the identified DEGs might control the development of the population. The results presented here should be helpful in guiding future studies on deciphering the indirect response of other organs to high CO2 concentration and heat waves, as well as the functions of seminal fluid proteins in O. communa. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|