Multiplicity of positive solutions to a singular $(p_1,p_2)$-Laplacian system with coupled integral boundary conditions

Autor: Jeongmi Jeong, Chan-Gyun Kim, EUN KYOUNG LEE
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2016, Iss 32, Pp 1-23 (2016)
Druh dokumentu: article
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2016.1.32
Popis: In this work, we investigate the existence and multiplicity results for positive solutions to a singular $(p_1,p_2)$-Laplacian system with coupled integral boundary conditions and a parameter $(\mu,\lambda) \in \mathbb{R}_+^3 $. Using sub-super solutions method and fixed point index theorems, it is shown that there exists a continuous surface $\mathcal{C}$ which separates $\mathbb{R}_+^2 \times (0,\infty)$ into two regions $\mathcal{O}_1$ and $\mathcal{O}_2$ such that the problem under consideration has two positive solutions for $( \mu,\lambda) \in \mathcal{O}_1,$ at least one positive solution for $( \mu,\lambda) \in \mathcal{C}$, and no positive solutions for $( \mu,\lambda) \in \mathcal{O}_2.$
Databáze: Directory of Open Access Journals