Autor: |
Zilong Li, Jichen Li, Meng Wu, Zexin Li, Jiawen Zhou, Yunjie Lu, Yong Xu, Lei Qin, Zhiwen Fan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Redox Biology, Vol 78, Iss , Pp 103414- (2024) |
Druh dokumentu: |
article |
ISSN: |
2213-2317 |
DOI: |
10.1016/j.redox.2024.103414 |
Popis: |
Liver ischemia-reperfusion (I/R) injury is a clinically relevant pathophysiological process that determines the effectiveness of life-saving liver transplantation, to which aberrant ROS accumulation plays a key role. In the present study we investigated the role of SUV39H1, a lysine methyltransferases, in this process focusing on regulatory mechanism and translational potential. We report that SUV39H1 expression was up-regulated in the liver tissues of mice subjected to ischemia-reperfusion and in hepatocytes exposed to hypoxia-reoxygenation (H/R) in a redox-sensitive manner. Mechanistically, coactivator associated arginine methyltransferases 1 (CARM1) mediated redox-sensitive Suv39h1 trans-activation by promoting histone H3R17 methylation. Consistently, pharmaceutical CARM1 inhibition attenuated liver I/R injury. In addition, global or hepatocyte conditional Suv39h1 KO mice were protected from liver I/R injury. RNA-seq revealed that aldehyde dehydrogenase 1 family 1a (Aldh1a1) as a novel target for SUV39H1. SUV39H1 directly bound to the Aldh1a1 promoter and repressed Aldh1a1 transcription in H/R-challenged hepatocytes. ALDH1A1 silencing abrogated the protective effects of SUV39H1 deficiency on H/R-inflicted injuries whereas ALDH1A1 over-expression mitigated liver I/R injury in mice. Importantly, administration of a small-molecule SUV39H1 inhibitor achieved similar hepatoprotective effects as SUV39H1 deletion. Finally, increased Suv39h1 expression and decreased Aldh1a1 expression were observed in liver I/R specimens in humans. In conclusion, our data uncover a regulatory role for SUV39H1 in liver I/R injury and serve as proof-of-concept that targeting the SUV39H1-ALDH1A1 axis might be considered as a reasonable approach for the intervention of liver I/R injury. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|