Autor: |
Matthew I Peña, Milya Davlieva, Matthew R Bennett, John S Olson, Yousif Shamoo |
Jazyk: |
angličtina |
Rok vydání: |
2010 |
Předmět: |
|
Zdroj: |
Molecular Systems Biology, Vol 6, Iss 1, Pp 1-11 (2010) |
Druh dokumentu: |
article |
ISSN: |
1744-4292 |
DOI: |
10.1038/msb.2010.43 |
Popis: |
Abstract Systems biology can offer a great deal of insight into evolution by quantitatively linking complex properties such as protein structure, folding, and function to the fitness of an organism. Although the link between diseases such as Alzheimer's and misfolding is well appreciated, directly showing the importance of protein folding to success in evolution has been more difficult. We show here that predicting success during adaptation can depend critically on enzyme kinetic and folding models. We used a ‘weak link’ method to favor mutations to an essential, but maladapted, adenylate kinase gene within a microbial population that resulted in the identification of five mutants that arose nearly simultaneously and competed for success. Physicochemical characterization of these mutants showed that, although steady‐state enzyme activity is important, success within the population is critically dependent on resistance to denaturation and aggregation. A fitness function based on in vitro measurements of enzyme activity, reversible and irreversible unfolding, and the physiological context reproduces in vivo evolutionary fates in the population linking organismal adaptation to its physical basis. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|