Autor: |
Petros Katsafados, Pantelis-Manolis Saviolakis, George Varlas, Haifa Ben-Romdhane, Kosmas Pavlopoulos, Christos Spyrou, Sufian Farrah |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Atmosphere, Vol 15, Iss 2, p 222 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-4433 |
DOI: |
10.3390/atmos15020222 |
Popis: |
Tropical Cyclone Shaheen (TCS), originating in the Arabian Sea on 30 September 2021, followed an east-to-west trajectory and made landfall as a category-1 cyclone in northern Oman on 3 October 2021, causing severe floods and damages before dissipating in the United Arab Emirates. This study aims to analyze the synoptic and dynamical conditions influencing Shaheen’s genesis and evolution. Utilizing ERA5 reanalysis data, SEVIRI-EUMETSAT imagery, and Sorbonne University Atmospheric Forecasting System (SUAFS) outputs, it was found that Shaheen manifested as a warm-core cyclone with moderate vertical wind shear within the eyewall. Distinctive features included a trajectory aligned with rising sea surface temperatures and increased specific humidity levels at 700 hPa in the Arabian Sea. As Shaheen approached the Gulf of Oman, a significant increase in rainfall rates occurred, correlated with variations in sea surface temperatures and vertical wind shear. Comparative analysis between SUAFS and ERA5 data revealed a slight northward shift in the SUAFS track and landfall. Advance warnings highlighted heavy rainfall, rough seas, and strong winds. This study provides valuable insights into the meteorological factors contributing to Shaheen’s formation and impact. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|