Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network
Autor: | Mohamed Abdel-Nasser, Vivek Kumar Singh, Ehab Mahmoud Mohamed |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Diagnostics, Vol 12, Iss 12, p 3024 (2022) |
Druh dokumentu: | article |
ISSN: | 2075-4418 20385544 |
DOI: | 10.3390/diagnostics12123024 |
Popis: | Existing nuclei segmentation methods face challenges with hematoxylin and eosin (H&E) whole slide imaging (WSI) due to the variations in staining methods and nuclei shapes and sizes. Most existing approaches require a stain normalization step that may cause losing source information and fail to handle the inter-scanner feature instability problem. To mitigate these issues, this article proposes an efficient staining-invariant nuclei segmentation method based on self-supervised contrastive learning and an effective weighted hybrid dilated convolution (WHDC) block. In particular, we propose a staining-invariant encoder (SIE) that includes convolution and transformers blocks. We also propose the WHDC block allowing the network to learn multi-scale nuclei-relevant features to handle the variation in the sizes and shapes of nuclei. The SIE network is trained on five unlabeled WSIs datasets using self-supervised contrastive learning and then used as a backbone for the downstream nuclei segmentation network. Our method outperforms existing approaches in challenging multiple WSI datasets without stain color normalization. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |