Autor: |
Daiki Terada, Arnout R. D. Voet, Hiroki Noguchi, Kenichi Kamata, Mio Ohki, Christine Addy, Yuki Fujii, Daiki Yamamoto, Yasuhiro Ozeki, Jeremy R. H. Tame, Kam Y. J. Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 7, Iss 1, Pp 1-13 (2017) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-017-06332-7 |
Popis: |
Abstract Computational protein design has advanced very rapidly over the last decade, but there remain few examples of artificial proteins with direct medical applications. This study describes a new artificial β-trefoil lectin that recognises Burkitt’s lymphoma cells, and which was designed with the intention of finding a basis for novel cancer treatments or diagnostics. The new protein, called “Mitsuba”, is based on the structure of the natural shellfish lectin MytiLec-1, a member of a small lectin family that uses unique sequence motifs to bind α-D-galactose. The three subdomains of MytiLec-1 each carry one galactose binding site, and the 149-residue protein forms a tight dimer in solution. Mitsuba (meaning “three-leaf” in Japanese) was created by symmetry constraining the structure of a MytiLec-1 subunit, resulting in a 150-residue sequence that contains three identical tandem repeats. Mitsuba-1 was expressed and crystallised to confirm the X-ray structure matches the predicted model. Mitsuba-1 recognises cancer cells that express globotriose (Galα(1,4)Galβ(1,4)Glc) on the surface, but the cytotoxicity is abolished. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|