A study of malaria vector surveillance as part of the Malaria Elimination Demonstration Project in Mandla, Madhya Pradesh

Autor: Ashok K. Mishra, Praveen K. Bharti, Anup Vishwakarma, Sekh Nisar, Harsh Rajvanshi, Ravendra K. Sharma, Kalyan B. Saha, Man Mohan Shukla, Himanshu Jayswar, Aparup Das, Harpreet Kaur, Suman L. Wattal, Altaf A. Lal
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Malaria Journal, Vol 19, Iss 1, Pp 1-13 (2020)
Druh dokumentu: article
ISSN: 1475-2875
DOI: 10.1186/s12936-020-03517-w
Popis: Abstract Background Understanding of malaria vector density, distribution, insecticide resistance, vector incrimination, infection status, and identification of sibling species are some of the essential components of vector control measures for achieving malaria elimination goals. Methods As part of the malaria elimination demonstration project, entomological surveillance was carried out from October 2017 to October 2019 by collecting indoor resting mosquitoes using hand catch method. Susceptibility test was done for determining the insecticide resistance status of vector mosquito Anopheles culicifacies using standard protocols by the World Health Organization. The cone bioassay method was used for determining the efficacy and quality of insecticide sprayed. Mosquitoes collected from different ecotypes were identified and processed for parasite identification, vector incrimination and sibling species determination. Results The two known malaria vector species (Anopheles culicifacies and Anopheles fluviatilis) were found in the study area, which have been previously reported in this and adjoining areas of the State of Madhya Pradesh. The prevalence of An. culicifacies was significantly higher in all study villages with peak in July while lowest number was recorded in May. Proportion of vector density was observed to be low in foothill terrains. The other anopheline species viz, Anopheles subpictus, Anopheles annularis, Anopheles vagus, Anopheles splendidus, Anopheles pallidus, Anopheles nigerrimus and Anopheles barbirostris were also recorded in the study area, although their prevalence was significantly less compared to the An. culicifacies. In 2017, An. culicifacies was found to be resistant to dichloro-diphenyl-trichloroethane (DDT) and malathion, with possible resistance to alphacypermethrin and susceptible to deltamethrin. However, in 2019, the species was found to be resistant to alphacypermethrin, DDT, malathion, with possible resistance to deltamethrin. The bioassays revealed 82 to > 98% corrected % mortality of An. culicifacies on day-one post-spraying and 35 to 62% on follow-up day-30. Anopheles culicifacies sibling species C was most prevalent (38.5%) followed by A/D and E while B was least pre-dominant (11.9%). Anopheles fluviatilis sibling species T was most prevalent (74.6%) followed by U (25.4%) while species S was not recorded. One An.culicifacies (sibling species C) was found positive for Plasmodium falciparum by PCR tests in the mosquitoes sampled from the test areas. Conclusion Based on the nine entomologic investigations conducted between 2017–2019, it was concluded that An. culicifacies was present throughout the year while An. fluviatilis had seasonal presence in the study areas. Anopheles culicifacies was resistant to alphacypermethrin and emerging resistance to deltamethrin was observed in this area. Anopheles culicifacies was confirmed as the malaria vector. This type of information on indigenous malaria vectors and insecticide resistance is important in implementation of vector control through indoor residual spraying (IRS) and use of insecticide-impregnated bed nets for achieving the malaria elimination goals.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje