Approximation of signals by general matrix summability with effects of Gibbs Phenomenon
Autor: | B. B. Jena, Lakshmi Narayan Mishra, S. K. Paikray, U. K. Misra |
---|---|
Jazyk: | English<br />Portuguese |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática, Vol 38, Iss 6 (2019) |
Druh dokumentu: | article |
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v38i6.39280 |
Popis: | In the proposed paper the degree of approximation of signals (functions) belonging to $Lip(\alpha,p_{n})$ class has been obtained using general sub-matrix summability and a new theorem is established that generalizes the results of Mittal and Singh [10] (see [M. L. Mittal and Mradul Veer Singh, Approximation of signals (functions) by trigonometric polynomials in $L_{p}$-norm, \textit{Int. J. Math. Math. Sci.,} \textbf{2014} (2014), ArticleID 267383, 1-6 ]). Furthermore, as regards to the convergence of Fourier series of the signals, the effect of the Gibbs Phenomenon has been presented with a comparison among different means that are generated from sub-matrix summability mean together with the partial sum of Fourier series of the signals. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |