On degeneracy loci of equivariant bi-vector fields on a smooth toric variety
Autor: | Elena Martinengo |
---|---|
Jazyk: | English<br />French<br />Italian |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Rendiconti di Matematica e delle Sue Applicazioni, Vol 40, Pp 81-95 (2019) |
Druh dokumentu: | article |
ISSN: | 1120-7183 2532-3350 |
Popis: | We study equivariant bi-vector fields on a toric variety. We prove that, on a smooth toric variety of dimension n, the locus where the rank of an equivariant bi-vector field is ≤ 2k is not empty and has at least a component of dimension ≥ 2k + 1, for all integers k > 0 such that 2k < n. The same is true also for k = 0, if the toric variety is smooth and compact. While for the non compact case, the locus in question has to be assumed to be non empty. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |