Adsorption and safe immobilization of Sr ions in modified zeolite matrices

Autor: Mahya Fayezi, Zahra Shiri-Yekta, Hamid Sepehrian, Mehran Heydari, Mohammad Rahghoshay, Samaneh Zolghadri
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-14 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-46381-9
Popis: Abstract In the present study, an Iranian natural zeolite (Sabzevar region) was evaluated as a natural adsorbent for the elimination and immobilization of strontium ions from an aqueous solution. For improving the adsorption efficiency of strontium ion, the zeolite surface was modified by the Schiff base ligand of bis (2-hydroxybenzaldehyde)1,2-diaminoethane (H2L). The natural zeolite and zeolite/H2L were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray fluorescence (XRF), BET and scanning electron microscope (SEM). Analysis of the natural zeolite showed that the zeolite is from the type of clinoptilolite and has a crystalline structure with the specific surface area 29.74 m2/g. The results showed that strontium adsorption onto modified zeolite increases compared to unmodified zeolite from 64.5% to 97.2% (at pH = 6). The effective parameters pH, adsorbent dosage, initial concentration of strontium ions, contact time, temperature, and interfering ions, were studied and optimized. The maximum adsorption efficiency was confirmed by modified zeolite and found to be 97.5% after 60 min of equilibrium time at pH 6, 0.05g as adsorbent dosage, and at 25 °C. Adsorption of strontium was confirmed by Langmuir model with maximum adsorption capacity of 10.31 mg/g. Kinetic studies showed that the adsorption of strontium ions on the adsorbent follows pseudo-second-order (PSO) model. Also, the thermodynamics of the adsorption process indicated that the adsorption of strontium on zeolite/H2L is an endothermic and spontaneous process, and the adsorption mechanism is a combination of physical and chemical adsorption. Finally, to manage the secondary waste generated from the adsorption process, strontium ions were immobilized in a zeolite structure. The results showed that the stabilization is well done with the thermal preparation process. After thermal treatment at 25–900 °C, modified zeolite satisfactorily retains strontium during back-exchange tests with NaCl solution. According to the results, the amount of strontium released from the adsorbent phase decreases from 52.6 to 1.6% with increasing heat treatment temperature.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje