Autor: |
P. Ilanchezhiyan, G. Mohan Kumar, C. Siva, H.D. Cho, S. Tamilselvan, S. Seal, T.W. Kang, D.Y. Kim |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Journal of Materials Research and Technology, Vol 9, Iss 6, Pp 12585-12594 (2020) |
Druh dokumentu: |
article |
ISSN: |
2238-7854 |
DOI: |
10.1016/j.jmrt.2020.08.104 |
Popis: |
Owing to their distinct physicochemical traits nanostructured semiconductors continue to find immense potential in energy and environment friendly applications. From this point, SmErxFe1-xO3 systems were chemically synthesized and studied in detail for their photoresponse performance and photocatalytic behavior. The material characteristics were initially studied using several analytical tools that include X-ray diffraction (XRD), Raman and microscopic (SEM/TEM) instruments. Substitution of erbium (Er) ions at Fe sites was conceived using X-ray photoelectron spectroscopic (XPS) analysis. Optical band gap and their associated defect states in perovskites (upon Er replacement) was additionally evaluated using UV and PL data. Photocatalytic efficiency of SmErxFe1-xO3 was at first adjudged through comparative studies with SmFeO3 by involving effective treatment of organic dyes under visible light. Secondly, improved electrical conductivity in SmErxFe1-xO3 was capitalized on to fabricate p-n devices that demonstrated remarkable photoelectrical performance. Forward current and response ratio improved significantly in such devices. The bias conditions were also noted to proportionately improve the photo switching potential. Time-dependent photoresponse results affirmed the stability in processed devices. The improved application performance in SmErxFe1-xO3 nanostructures has been reasoned to effective substitution of Er ions, which tend to influence the O-Fe-O interactions and result with the observed electrical characteristics to facilitate the much needed improved charge transfer process. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|