Preosteocytes/osteocytes have the potential to dedifferentiate becoming a source of osteoblasts.

Autor: Elena Torreggiani, Brya G Matthews, Slavica Pejda, Igor Matic, Mark C Horowitz, Danka Grcevic, Ivo Kalajzic
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: PLoS ONE, Vol 8, Iss 9, p e75204 (2013)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0075204
Popis: Presently there is no clear evidence for the ability of mature osteogenic lineage cells to dedifferentiate. In order to identify and trace mature osteogenic lineage cells, we have utilized transgenic mouse models in which the dentin matrix protein 1 (Dmp1) promoter drives expression of GFP (active marker) or Cre recombinase (historic label) in preosteocytes/osteocytes. In long bone chip outgrowth cultures, in which cells on the bone surface were enzymatically removed, cells with previous activity of the Dmp1 promoter migrated onto plastic and down-regulated Dmp1-GFP expression. Dmp1Cre-labeled cells from these cultures had the potential to re-differentiate into the osteogenic lineage, while the negative population showed evidence of adipogenesis. We observed numerous Dmp1Cre-labeled osteoblasts on the surface of bone chips following their in vivo transplantation. Our data indicate that cells embedded in bone matrix are motile, and once given access to the extra bony milieu will migrate out of their lacunae. This population of cells is phenotypically and functionally heterogeneous in vitro. Once the preosteocytes/osteocytes leave lacunae, they can dedifferentiate, potentially providing an additional source of functional osteoblasts.
Databáze: Directory of Open Access Journals