The Origin of Au/Ce1-xZrxO2 Catalyst’s Active Sites in Low-Temperature CO Oxidation

Autor: Izabela Dobrosz-Gómez, Miguel-Ángel Gómez-García, Jacek Michał Rynkowski
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Catalysts, Vol 10, Iss 11, p 1312 (2020)
Druh dokumentu: article
ISSN: 2073-4344
DOI: 10.3390/catal10111312
Popis: Gold catalysts have found applications in many reactions of both industrial and environmental importance. Great interest has been paid to the development of new processes that reduce energy consumption and minimize pollution. Among these reactions, the catalytic oxidation of carbon monoxide (CO) is an important one, considering that a high concentration of CO in the atmosphere creates serious health and environmental problems. This paper examines the most important achievements and conclusions arising from the own authorship contributions concerning (2 wt. % Au)/Ce1−xZrxO2 catalyst’s active sites in low-temperature CO oxidation. The main findings of the present review are: (1) The effect of preparing conditions on Au crystallite size, highlighting some of the fundamental underpinnings of gold catalysis: the Au surface composition and the poisoning effect of residual chloride on the catalytic activity of (2 wt. % Au)/Ce1−xZrxO2 catalysts in CO oxidation; (2) The identification of ion clusters related to gold and their effect on catalyst’ surface composition; (3) The importance of physicochemical properties of oxide support (e.g., its particle size, oxygen mobility at low temperature and redox properties) in the creation of catalytic performance of Au catalysts; (4) The importance of oxygen vacancies, on the support surface, as the centers for oxygen molecule activation in CO reaction; (5) The role of moisture (200–1000 ppm) in the generation of enhanced CO conversion; (6) The Au-assisted Mars-van Krevelen (MvK) adsorption–reaction model was pertinent to describe CO oxidation mechanism. The principal role of Au in CO oxidation over (2 wt. % Au)/Ce1−xZrxO2 catalysts was related to the promotion in the transformation process of reversibly adsorbed or inactive surface oxygen into irreversibly adsorbed active species; (7) Combination of metallic gold (Au0) and Au-OH species was proposed as active sites for CO adsorption. These findings can help in the optimization of Au-containing catalysts.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje