Hematopoietic stem cell gene therapy targeting TGFβ enhances the efficacy of irradiation therapy in a preclinical glioblastoma model

Autor: Jennifer Williams, Gary Shaw, Tereza Andreou, Rebecca J Brownlie, Robert J Salmond, Erica Watson, Heiko Wurdak, Susan C Short, Mihaela Lorger
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal for ImmunoTherapy of Cancer, Vol 9, Iss 3 (2021)
Druh dokumentu: article
ISSN: 2051-1426
DOI: 10.1136/jitc-2020-001143
Popis: Patients with glioblastoma (GBM) have a poor prognosis, and inefficient delivery of drugs to tumors represents a major therapeutic hurdle. Hematopoietic stem cell (HSC)-derived myeloid cells efficiently home to GBM and constitute up to 50% of intratumoral cells, making them highly appropriate therapeutic delivery vehicles. Because myeloid cells are ubiquitously present in the body, we recently established a lentiviral vector containing matrix metalloproteinase 14 (MMP14) promoter, which is active specifically in tumor-infiltrating myeloid cells as opposed to myeloid cells in other tissues, and resulted in a specific delivery of transgenes to brain metastases in HSC gene therapy. Here, we used this novel approach to target transforming growth factor beta (TGFβ) as a key tumor-promoting factor in GBM. Transplantation of HSCs transduced with lentiviral vector expressing green fluorescent protein (GFP) into lethally irradiated recipient mice was followed by intracranial implantation of GBM cells. Tumor-infiltrating HSC progeny was characterized by flow cytometry. In therapy studies, mice were transplanted with HSCs transduced with lentiviral vector expressing soluble TGFβ receptor II–Fc fusion protein under MMP14 promoter. This TGFβ-blocking therapy was compared with the targeted tumor irradiation, the combination of the two therapies, and control. Tumor growth and survival were quantified (statistical significance determined by t-test and log-rank test). T cell memory response was probed through a repeated tumor challenge. Myeloid cells were the most abundant HSC-derived population infiltrating GBM. TGFβ-blocking HSC gene therapy in combination with irradiation significantly reduced tumor burden as compared with monotherapies and the control, and significantly prolonged survival as compared with the control and TGFβ-blocking monotherapy. Long-term protection from GBM was achieved only with the combination treatment (25% of the mice) and was accompanied by a significant increase in CD8+ T cells at the tumor implantation site following tumor rechallenge. We demonstrated a preclinical proof-of-principle for tumor myeloid cell-specific HSC gene therapy in GBM. In the clinic, HSC gene therapy is being successfully used in non-cancerous brain disorders and the feasibility of HSC gene therapy in patients with glioma has been demonstrated in the context of bone marrow protection. This indicates an opportunity for clinical translation of our therapeutic approach.
Databáze: Directory of Open Access Journals