Weighted Hardy operators in local generalized Orlicz-Morrey spaces

Autor: C. Aykol, Z.O. Azizova, J.J. Hasanov
Jazyk: English<br />Ukrainian
Rok vydání: 2021
Předmět:
Zdroj: Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 2, Pp 522-533 (2021)
Druh dokumentu: article
ISSN: 2075-9827
2313-0210
32574274
DOI: 10.15330/cmp.13.2.522-533
Popis: In this paper, we find sufficient conditions on general Young functions $(\Phi, \Psi)$ and the functions $(\varphi_1,\varphi_2)$ ensuring that the weighted Hardy operators $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ are of strong type from a local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ into another local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$. We also obtain the boundedness of the commutators of $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ from $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ to $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$.
Databáze: Directory of Open Access Journals