Weighted Hardy operators in local generalized Orlicz-Morrey spaces
Autor: | C. Aykol, Z.O. Azizova, J.J. Hasanov |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 2, Pp 522-533 (2021) |
Druh dokumentu: | article |
ISSN: | 2075-9827 2313-0210 32574274 |
DOI: | 10.15330/cmp.13.2.522-533 |
Popis: | In this paper, we find sufficient conditions on general Young functions $(\Phi, \Psi)$ and the functions $(\varphi_1,\varphi_2)$ ensuring that the weighted Hardy operators $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ are of strong type from a local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ into another local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$. We also obtain the boundedness of the commutators of $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ from $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ to $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |