Vibration Fatigue Damage Estimation by New Stress Correction Based on Kurtosis Control of Random Excitation Loadings

Autor: Yuzhu Wang, Roger Serra
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Sensors, Vol 21, Iss 13, p 4518 (2021)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s21134518
Popis: In the pioneer CAE stage, life assessment is the essential part to make the product meet the life requirement. Commonly, the lives of flexible structures are determined by vibration fatigue which accrues at or close to their natural frequencies. However, existing PSD vibration fatigue damage estimation methods have two prerequisites for use: the behavior of the mechanical system must be linear and the probability density function of the response stresses must follow a Gaussian distribution. Under operating conditions, non-Gaussian signals are often recorded as excitation (usually observed through kurtosis), which will result in non-Gaussian response stresses. A new correction is needed to make the PSD approach available for the non-Gaussian vibration to deal with the inevitable extreme value of high kurtosis. This work aims to solve the vibration fatigue estimation under the non-Gaussian vibration; the key is the probability density function of response stress. This work researches the importance of non-Gaussianity numerically and experimentally. The beam specimens with two notches were used in this research. All excitation stays in the frequency range that only affects the second natural frequency, although their kurtosis is different. The results show that the probability density function of response stress under different kurtoses can be obtained by kurtosis correction based on the PSD approach of the frequency domain.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje