Nonemptiness of severi varieties on enriques surfaces

Autor: Ciro Ciliberto, Thomas Dedieu, Concettina Galati, Andreas Leopold Knutsen
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Forum of Mathematics, Sigma, Vol 11 (2023)
Druh dokumentu: article
ISSN: 2050-5094
DOI: 10.1017/fms.2023.47
Popis: Let $(S,L)$ be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system $|L|$ , that is, for any number of nodes $\delta =0, \ldots , p_a(L)-1$ . This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande–Schmitt, under the additional condition of non-2-divisibility.
Databáze: Directory of Open Access Journals