Nonemptiness of severi varieties on enriques surfaces
Autor: | Ciro Ciliberto, Thomas Dedieu, Concettina Galati, Andreas Leopold Knutsen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Forum of Mathematics, Sigma, Vol 11 (2023) |
Druh dokumentu: | article |
ISSN: | 2050-5094 |
DOI: | 10.1017/fms.2023.47 |
Popis: | Let $(S,L)$ be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system $|L|$ , that is, for any number of nodes $\delta =0, \ldots , p_a(L)-1$ . This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande–Schmitt, under the additional condition of non-2-divisibility. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |